5 Benefits of Detection-as-Code
Published 04/27/2022
This blog was originally published by Panther here.
Written by Kartikey Pandey, Panther.
How modern teams can automate security analysis at scale in the era of everything-as-code.
TL;DR: Adopt a modern, test-driven methodology for securing your organization with Detection-as-Code.
Over the past decade, threat detection has become business-critical and even more complicated. As businesses move to the cloud, manual threat detection processes are no longer able to keep up. How can teams automate security analysis at scale and address the challenges that threaten business objectives? The answer lies in treating threat detections like software or detection-as-code.
Detection-as-Code: A New (Hope) Paradigm
Detections define logic for analyzing security log data to identify attacker behaviors. When a rule is matched, an alert gets sent to your team for containment or investigation.
What is detection-as-code?
Detection-as-Code is a modern, flexible, and structured approach to writing detections that apply software engineering best practices to security. By adopting this new paradigm, teams can build scalable processes for writing and hardening detections to identify sophisticated threats across rapidly expanding environments.
Benefits of Adopting a Code-Driven Workflow
Threat detection programs that are fine-tuned for specific environments and systems are the most impactful. By treating detections as well-written code that can be tested, checked into source control, and code-reviewed by peers, teams can produce higher-quality alerts that reduce fatigue and quickly flag suspicious activity.
1. Build Custom, Flexible Detections with a Programming Language
Writing detections in a universally-recognized, flexible, and expressive language such as Python offers several advantages instead of using domain-specific languages (DSL) that are too limited. With languages, such as Python, you can write more sophisticated and tailored detections to fit the needs specific to your enterprise. These rules also tend to be more readable and easy to understand as the complexity increases.
Another benefit of this approach is utilizing a rich set of built-in or third-party libraries developed by the security community for interacting with APIs or processing data, which increases the effectiveness of the detection.
2. Test-Driven Development (TDD)
A proper QA for detection code can enable teams to discover detection blind-spots early on, cover testing for false alerts, and promote detection efficacy. A TDD approach allows security teams to think like an attacker, document that knowledge, and curate an internal repository of insight into the attacker’s lifecycle.
The advantage of TDD is more than just validation of code correctness. A TDD approach to writing detections improves the quality of detection code and enables more modular, extensible, and flexible detections. Engineers can easily make changes to their detection without fear of breaking alerts or hamstringing everyday operations.
3. Collaboration with Version Control Systems
When writing new detections or modifying them, version control allows teams to quickly and easily revert to previous states. It also confirms that teams are using the most up-to-date detection rather than referencing outdated or wrong code. Version control can also help give needed context for specific detections that triggered an alert or help pinpoint when detections are changed.
As new and additional data enters the system over time, detections must also change. A change control process is essential to help teams address and adjust the detections as needed, while simultaneously ensuring that all changes are well-documented and well-reviewed.
4. Automated Workflows for Reliable Detections
A Continuous Integration/Continuous Deployment (CI/CD) pipeline can be beneficial for security teams that have long wanted to move security further left. Using a CI/CD pipeline helps achieve the following two goals:
- Eliminate silos between teams as they work together on a common platform, code-review each other’s work, and stay organized.
- Provide automated testing and delivery pipelines for your security detections. Teams can stay agile by focusing on building fine-tuned detections. Instead of manually testing, deploying, and ensuring that the detections aren’t overly tuned, which could trigger false alerts.
5. Reusable Code
Last but not least, Detection-as-Code can promote code reusability across a large set of detections. As teams write large numbers of detections over time, they start to see specific patterns emerge. Engineers can reuse the existing code to perform the same or very similar function across different detections without starting from scratch.
Code reusability can be a vital part of detection-writing that allows teams to share functions between detections or modify and adapt detections for specific use-cases. For example, suppose you needed to repeat a set of Allow/Deny lists (let’s say for access management) or a particular processing logic in multiple places. In that case, you can use Helpers in languages such as Python to share functions between detections.
Related Articles:
10 Fast Facts About Cybersecurity for Financial Services—And How ASPM Can Help
Published: 12/20/2024
Decoding the Volt Typhoon Attacks: In-Depth Analysis and Defense Strategies
Published: 12/17/2024
Threats in Transit: Cyberattacks Disrupting the Transportation Industry
Published: 12/17/2024
Zero-Code Cloud: Building Secure, Automated Infrastructure Without Writing a Line
Published: 12/16/2024