Cloud 101CircleEventsBlog
Missed CSA's Cyber Monday sale? You can still get 50% off the CCSK + CCZT Exam & Training Bundle and Token Bundle with raincheck code 'rcdoubledip24'

Download Publication

AI Risk Management: Thinking Beyond Regulatory Boundaries
AI Risk Management: Thinking Beyond Regulatory Boundaries
Who it's for:
  • Auditors, regulators, and compliance officers
  • AI developers and engineers
  • Senior management
  • Data privacy experts
  • Third-party vendors
  • Academic researchers
  • AI ethicists and policy makers

AI Risk Management: Thinking Beyond Regulatory Boundaries

Release Date: 11/13/2024

While artificial intelligence (AI) offers tremendous benefits, it also introduces significant risks and challenges that remain unaddressed. A comprehensive AI risk management framework is the only way we can achieve true trust in AI. This approach will need to proactively consider compliance with improvements beyond the regulatory necessities.

In response to this need, this publication presents a holistic methodology for impartially assessing AI systems beyond mere compliance. It addresses the critical aspects of AI technology, including data privacy, security, and trust. These audit considerations apply to a wide range of industries and build upon existing AI audit best practices. This innovative approach spans the entire AI lifecycle, from development to decommissioning.

The first part establishes a comprehensive understanding of the components used to assess AI end-to-end. It shares considerations for a broad range of technologies, enabling critical thinking and supporting risk assessment activities.

The second part consists of appendices with potential questions corresponding to each technology covered in the first section. The questions are not exhaustive, but serve as guidelines to identify potential risks. The aim is to stimulate unconventional thinking and challenge existing assumptions, thereby enhancing AI risk assessment practices and increasing overall trustworthiness in intelligent systems.

Key Takeaways:
  • Fundamental concepts, principles, and vocabulary used to assess AI end-to-end
  • Key metrics used to evaluate an intelligent systems
  • The value of AI trustworthiness beyond regulatory compliance
  • How to assess risk during all stages of the AI lifecycle, including development, deployment, monitoring, and decommissioning
  • Key factors that contribute to effective AI governance 
  • How to comply with global AI regulations such as the General Data Protection Regulation (GDPR) and EU AI Act
  • Specific aspects to consider when evaluating an AI system, including AI infrastructure, sensors, data storage, communication interfaces, control systems, privacy methods, and much more
  • Assessment questions pertaining to the above concepts
Download this Resource

Bookmark
Share
Related resources
Map the Transaction Flows for Zero Trust
Map the Transaction Flows for Zero Trust
AI Organizational Responsibilities - Governance, Risk Management, Compliance and Cultural Aspects
AI Organizational Responsibilities - Governance...
AI in Medical Research: Applications & Considerations
AI in Medical Research: Applications & Consider...
The European Union Artificial Intelligence (AI) Act: Managing Security and Compliance Risk at the Technological Frontier
The European Union Artificial Intelligence (AI) Act: Managing Secur...
Published: 12/10/2024
From AI Agents to MultiAgent Systems: A Capability Framework
From AI Agents to MultiAgent Systems: A Capability Framework
Published: 12/09/2024
AI-Enhanced Penetration Testing: Redefining Red Team Operations
AI-Enhanced Penetration Testing: Redefining Red Team Operations
Published: 12/06/2024
AI in Cybersecurity - The Double-Edged Sword
AI in Cybersecurity - The Double-Edged Sword
Published: 11/27/2024
Cloudbytes Webinar Series
Cloudbytes Webinar Series
January 1 | Online
Are you a research volunteer? Request to have your profile displayed on the website here.

Interested in helping develop research with CSA?

Related Certificates & Training